Bayes' Theorem
The Medical Testing Paradox & Conditional Probability
📚 Introduction
🏥 Medical Testing Paradox
假设有一种罕见疾病,患病率为1%。现在有一种检测方法,准确率高达99%(灵敏度99%,假阳性率5%)。 如果你的检测结果呈阳性,你真正患病的概率是多少?
Intuition says ~99%, but the real answer will surprise you...
📐 Bayes' Formula
P(A|B) = P(B|A) × P(A) / P(B)
Posterior = Likelihood × Prior / Marginal
🔑 Key Concepts
- Prior P(A): Probability before new evidence (e.g., disease prevalence)
- Likelihood P(B|A): Probability of evidence given event (e.g., sensitivity)
- Posterior P(A|B): Probability of event after observing evidence
💡 Why is it counterintuitive?
当疾病很罕见时,即使检测很准确,假阳性的绝对数量也可能远超真阳性。 这就是为什么不建议对低风险人群进行大规模筛查的原因之一。
⚙️ Adjust Parameters
🎯 Bayesian Calculation
If you test positive, the probability of actually having the disease is
16.7%
Not the intuitive 99%
🤯 Surprised?
即使检测准确率很高,当疾病罕见时,阳性结果中大部分可能是假阳性! 这就是贝叶斯定理的威力——它告诉我们要考虑基础概率(先验)。
📊 Confusion Matrix
Actually Sick
Actually Healthy
Test Positive
True Positive
0.99%
0.99%
False Positive
4.95%
4.95%
Test Negative
False Negative
0.01%
0.01%
True Negative
94.05%
94.05%
👥 Population Visualization
Imagine 1000 people tested, see the distribution:
True Positive (10)
False Positive (50)
False Negative (0)
True Negative (940)
60
Total Positive
10
Actually Sick
50
False Alarm
16.7%
PPV